cyclotomic rational - significado y definición. Qué es cyclotomic rational
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es cyclotomic rational - definición

CONCEPT IN SINGULARITY THEORY
Rational Singularity; Rational singularities

Rational egoism         
ETHICAL THEORY
Rational selfishness; Rational egoist; Rational self-interest; Rational Selfishness; Egoism (rational); Rational self interest
Rational egoism (also called rational selfishness) is the principle that an action is rational if and only if it maximizes one's self-interest.Baier (1990), p.
Rational-legal authority         
FORM OF LEADERSHIP IN WHICH THE AUTHORITY OF AN ORGANIZATION OR A RULING REGIME IS LARGELY TIED TO LEGAL RATIONALITY, LEGAL LEGITIMACY AND BUREAUCRACY
Legal domination; Legal-rational authority; Rational authority; Rational-legal; Legal rationality; Rationalistic authority; Rational–legal authority; Legitimate domination; Socioeconomic order
Rational-legal authority (also known as rational authority, legal authority, rational domination, legal domination, or bureaucratic authority) is a form of leadership in which the authority of an organization or a ruling regime is largely tied to legal rationality, legal legitimacy and bureaucracy. The majority of the modern states of the twentieth and twenty-first centuries are rational-legal authorities, according to those who use this form of classification.
Cyclotomic field         
FIELD EXTENSION OF THE RATIONAL NUMBERS BY A PRIMITIVE ROOT OF UNITY
Cyclotomic; Cyclotomic fields
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers.

Wikipedia

Rational singularity

In mathematics, more particularly in the field of algebraic geometry, a scheme X {\displaystyle X} has rational singularities, if it is normal, of finite type over a field of characteristic zero, and there exists a proper birational map

f : Y X {\displaystyle f\colon Y\rightarrow X}

from a regular scheme Y {\displaystyle Y} such that the higher direct images of f {\displaystyle f_{*}} applied to O Y {\displaystyle {\mathcal {O}}_{Y}} are trivial. That is,

R i f O Y = 0 {\displaystyle R^{i}f_{*}{\mathcal {O}}_{Y}=0} for i > 0 {\displaystyle i>0} .

If there is one such resolution, then it follows that all resolutions share this property, since any two resolutions of singularities can be dominated by a third.

For surfaces, rational singularities were defined by (Artin 1966).